1.引言
ISO/TS 276871和ASTM E24562都將納米粒子定義為100nm及以下的粒徑,使其成為使用廣泛的分類。由于科學(xué)和其他原因,不太嚴(yán)格的解釋擴(kuò)大了上限范圍。現(xiàn)在許多大于100nm的納米材料通常被稱為納米顆粒。開發(fā)這種尺寸范圍的藥物產(chǎn)品的動(dòng)機(jī)在于改善其溶出度/生物利用度、靶向性、系統(tǒng)中的循環(huán)時(shí)間和藥代動(dòng)力學(xué)。
這些藥物的研究許多是為了增強(qiáng)靶向性而開發(fā)的。被動(dòng)靶向方法通過(guò)減小尺寸并用諸如聚乙二醇(PEG)的涂層掩蓋納米顆粒來(lái)增加循環(huán)時(shí)間。主動(dòng)靶向方法改變納米顆粒的表面以尋找并粘附于身體的特定部位,同時(shí)避免健康組織,例如癌癥腫瘤??梢蕴砑蛹{米顆粒表面上的細(xì)胞特異性配體以特異性結(jié)合互補(bǔ)受體。
Nicomp 3000系列納米粒度儀(圖1)是用于測(cè)量藥物遞送的納米顆粒粒徑和zeta電位(表面電荷)的儀器。
圖1. Nicomp 3000系列納米粒度儀
2. 納米粒子的類型
納米晶
活性藥物成分(API)通常是結(jié)晶的。疏水性晶體可能難以配制成以親水性載體機(jī)制遞送。通過(guò)將尺寸減小到納米晶體范圍,納米膨脹可以提高藥物的生物利用度,其中溶解速度是限速步驟,例如水溶性差的藥物3。這些納米晶體通常需要使用表面活性劑或聚合物來(lái)穩(wěn)定,包括在加工過(guò)程中。粒徑的減小通過(guò)增加表面積A(圖2)和飽和溶解度Cs來(lái)增加溶解速率。
圖2. 表面積擴(kuò)大,粒徑減小
Noyes-Whitney方程(方程1)顯示了A和Cs的增加將如何影響溶解速率dC/dt。
dC/dt=DA/Vh(Cs - Cx).......(方程1)
? dC/dt=溶出速率
? D=擴(kuò)散系數(shù)
? A=表面積
? Cs=邊界層的濃度
? Cx=濃度API@給定時(shí)間
? V=體積溶解介質(zhì)
? h=邊界層的高度
基于脂質(zhì)的液晶納米顆粒(LCNP)是另一種能夠提高疏水性和親水性藥物的生物利用度的遞送系統(tǒng)。這些是通過(guò)將非層狀液晶基質(zhì)進(jìn)行高剪切能量分散到水相中制備的自組裝結(jié)構(gòu)。LCNP的粒徑是需要適當(dāng)分析和控制的重要物理化學(xué)性質(zhì)。Nicomp3000系列納米粒度儀已成功用于確定LCNP分散體中的平均大小和聚集體的存在。4將紫杉醇加入LCNP分散體中并通過(guò)Nicomp3000系列納米粒度儀和TEM分析,參見圖3。
圖3. LCNP分散體的Nicomp和TEM結(jié)果,版權(quán)復(fù)制自4
TEM圖像表示較小的近25nm顆粒和100nm范圍內(nèi)的較大顆粒的雙峰粒度分布 。較高的Nicomp結(jié)果是高斯強(qiáng)度分布平均值迫使整個(gè)分布成為一個(gè)峰值。較低的Nicomp結(jié)果利用專有的Nicomp非負(fù)最小二乘算法來(lái)報(bào)告更高的分辨率和更準(zhǔn)確地描述實(shí)際粒度分布的雙峰性質(zhì)。突出了Nicomp3000系列納米粒度儀的一個(gè)主要優(yōu)點(diǎn)?即使在濃度低至0.2mg/mL時(shí)也能解析多峰分布。5
膠束
另一種增加疏水性藥物增溶作用的潛在藥物遞送系統(tǒng)是聚合物膠束。6當(dāng)溶液中聚合物的濃度超過(guò)一定的臨界膠束濃度(CMC)時(shí),就會(huì)形成膠束。聚合物膠束是由兩親性嵌段共聚物合成的核殼納米結(jié)構(gòu)。膠束具有尺寸非常?。?0?100 nm)的優(yōu)點(diǎn),可以改善對(duì)實(shí)體瘤的被動(dòng)靶向。通過(guò)用配體修飾表面,聚合物膠束能夠進(jìn)行位點(diǎn)特異的藥物遞送。
Nicomp3000系列納米粒度儀已被用于許多基于膠束的研究項(xiàng)目中的顆粒尺寸測(cè)量。7-12在一項(xiàng)研究中,12聚合物膠束是使用聚己內(nèi)酯(PCL)和聚乙二醇(PEG)共聚物形成的。以多西他賽(DTX)為模型藥物,用前列腺特異性膜抗原(SMLP)小分子配體修飾表面。圖4顯示了膠束的自組裝和藥物負(fù)載的最終結(jié)構(gòu)的內(nèi)吞過(guò)程。
圖4. 靶向PSMA的DTX負(fù)載聚合物膠束的制備和內(nèi)吞作用12
本研究中使用的兩個(gè)樣品通過(guò)Nicomp3000系列納米粒度儀和TEM測(cè)試的粒度如圖5所示。非靶向膠束的數(shù)據(jù)顯示在左邊,靶向膠束顯示在右邊。DLS數(shù)據(jù)看起來(lái)略大于TEM圖像,這可能是由于在TEM分析之前水蒸發(fā)引起的PEG殼的收縮。
圖5. DLS和TEM測(cè)定的非靶向(上)和靶向(下)聚合物膠束的尺寸12
脂質(zhì)體
脂質(zhì)體是一種雙層囊泡,通常在制藥工業(yè)中用作將化療藥物輸送到腫瘤區(qū)域的藥物輸送系統(tǒng)。它們由磷脂組成,磷脂的極性末端連接到非極性鏈上,自組裝成雙層囊泡,極性末端面向水介質(zhì),非極性末端形成雙層。在藥物應(yīng)用中,活性藥物成分(API)通常被摻入脂質(zhì)體,或者被摻入親水口袋,或者被夾在雙層之間,這取決于API的親水性,見圖6。表面改性對(duì)于靶向遞送是常見的。
圖6. 復(fù)雜的脂質(zhì)體結(jié)構(gòu)
在處理脂質(zhì)體時(shí)監(jiān)測(cè)粒徑至關(guān)重要,Nicomp3000系列納米粒度儀經(jīng)常用于此應(yīng)用。13-20在Entegris的一項(xiàng)內(nèi)部研究中,脂質(zhì)體是使用3:1:1的HSPC、膽固醇和mPEG-DSP的配方制成的。樣品首先通過(guò)轉(zhuǎn)速7200rpm混合10分鐘,然后使用微射流均質(zhì)機(jī)21搭配Y型腔采用25000psi的壓力制成脂質(zhì)體。對(duì)樣品進(jìn)行均質(zhì)處理1次、3次、5次和10次,使其通過(guò)微流器。預(yù)混物和處理過(guò)的樣品的圖像(從左到右)如圖7所示。
圖7. 預(yù)混合,均質(zhì)1次、3次、5次和10次
脂質(zhì)體樣品在Nicomp3000系列納米粒度儀和AccuSizer®系列液體顆粒計(jì)數(shù)器上進(jìn)行分析。Nicomp用于確定加工過(guò)程中強(qiáng)度平均尺寸的減小,而AccuSizer(LE傳感器范圍0.5?400μm)用于量化分布中較大粒子尾部的存在。Nicomp檢測(cè)結(jié)果如圖8所示,AccuSizer檢測(cè)結(jié)果如圖9所示。
圖8. Nicomp 檢測(cè)結(jié)果從右到左;預(yù)混合,均質(zhì)1次、3次、5次和10次
圖9. AccuSizer 檢測(cè)結(jié)果從右到左;預(yù)混合,均質(zhì)1次、3次、5次和10次
使用DLS來(lái)確定平均尺寸,使用SPOS來(lái)量化尾部的存在和濃度,這個(gè)搭配在許多行業(yè)中都能見到,是USP<729>脂質(zhì)注射乳劑中球粒徑分布的一個(gè)組成部分。
用于過(guò)程監(jiān)控的DLS
雖然絕大多數(shù)DLS檢測(cè)都是在實(shí)驗(yàn)室進(jìn)行的,但Entegris在客戶生產(chǎn)操作中安裝了多個(gè)設(shè)備,在生產(chǎn)工藝期間定期檢測(cè)顆粒尺寸。23這些設(shè)備已用于監(jiān)測(cè)藥物輸送的納米顆粒制造過(guò)程中使用的高壓均質(zhì)過(guò)程、稀釋樣品以避免造成多重散射效應(yīng)、檢測(cè)樣品,然后重復(fù)該程序(見圖10)。整個(gè)測(cè)量周期約為兩分鐘,為監(jiān)控生產(chǎn)工藝操作的工程師提供實(shí)時(shí)的粒度信息。
圖10. 在線DLS系統(tǒng)示意圖
圖11顯示了作為高壓均質(zhì)器下游壓力函數(shù)的在線DLS結(jié)果。目標(biāo)是確定將顆粒尺寸保持在非常接近100nm尺寸的最佳壓力。在確定最佳壓力(~10000 psi)后,使用在線DLS系統(tǒng)來(lái)確保整個(gè)批次的生產(chǎn)符合規(guī)范。
圖11. DLS實(shí)時(shí)檢測(cè)結(jié)果中的壓力與顆粒尺寸對(duì)比
3. 結(jié)論
Nicomp納米粒度儀廣泛用于研究、24-39質(zhì)量釋放測(cè)試和過(guò)程監(jiān)測(cè)中納米級(jí)藥物遞送系統(tǒng)的粒度和zeta電位分析。AccuSizer液體顆粒計(jì)數(shù)器提供了一種補(bǔ)充技術(shù),用于確定較大顆粒的濃度,用于表明不穩(wěn)定或未優(yōu)化的配方或工藝條件。
1 ISO/TS 27687, Nanotechnologies—Terminology and defifinitions for nanoobjects—Nanoparticle, nanofifibre and nanoplate,
2 ASTM E2456, Standard Terminology Relating to Nanotechnology,
3 Jens-Uwe et al., Nanocrystal technology, drug delivery and clinical applications, International Journal of Nanomedicine 2008:3(3) 295?309
4 Zeng et al., Lipid-based liquid crystalline nanoparticles as oral drug delivery vehicles for poorly water-soluble drugs International Journal of Nanomedicine 2012:7
5 Scomparin et al., Novel folated and non-folated pullulan bioconjugates for anticancer drug delivery European Journal of Pharmaceutical Sciences 42 (2011) 547?558
6 Cory et. Al, Polymeric Micelles for Drug Delivery, CurrPharm Des. 006;12(36):4669-84
7 Koizumi et al., Novel SN 38 Incorporating Polymeric Micelles, NK012 Eradicate Vascular Endothelial Growth Factor Secreting Bulky Tumors, Cancer Res 2006; 66: (20) with Nicomp data
8 Song et al., Self-assembled micelles of novel amphiphilic copolymer cholesterol-coupled F68 containing cabazitaxel as a drug delivery system, Int J Nanomedicine. 2014; 9: 2307?2317.
9 Wang, Pharmacokinetics and Biodistribution of Paclitaxel-loaded Pluronic P105/L101 Mixed Polymeric Micelles, Pharmaceutical Society of Japan, 128(6), 2008
10 Bachar et al., Development and characterization of a novel drug nanocarrier for oral delivery, based on self-assembled b-casein micelles, Journal of Controlled Release, Volume 160, Issue 2, 10 June 2012
11 Jiang et al., Poly(aspartic acid) derivatives as polymeric micelle drug delivery systems J Appl Polym Sci 101: 2871?2878, 2006
12 Jin et al., PSMA Ligand Conjugated PCL-PEG Polymeric Micelles Targeted to Prostate Cancer Cells, PLoS ONE 9(11): e112200.doi:10.1371/journal.pone.0112200
13 Zidan et al., Near-Infrared Investigations of Novel Anti-HIV Tenofovir Liposomes, The AAPS Journal, Vol. 12, No. 2, June 2010
14 Wong et al., A New Polymer-Lipid Hybrid Nanopart14 Wong et al., A New Polymer-Lipid Hybrid Nanoparticle System Increases Cytotoxicity of Doxorubicin Against Multidrug-Resistant Human Breast Cancer Cells, Pharmaceutical Research, Vol. 23, No. 7, July 2006
15 Zhang et al., The cargo of CRPPR-conjugated liposomes crosses the intact murine cardiac endotheli[1]um, J Control Release, 2012 October 10; 163(1)
16 Guan et al., Enhanced oral bioavailability of cyclosporine A by liposomes containing a bile salt, International Journal ofNanomedicine 2011:6
17 Ando et al., Reactivity of IgM antibodies elicited by PEGylated liposomes or PEGylated lipoplexes against auto and foreign antigens, Journal of Controlled Release, Volume 270, 28 January 2018
18 Johnston et al., Characterization of the drug retention and pharmacokinetic properties of liposomal nanoparticles containing dihydrosphingomyelin, Biochimica et Biophysica Acta 1768 (2007)
19 Cipolla et al., Modifying the Release Properties of Liposomes Toward Personalized Medicine, Journal of Pharmaceutical Sciences 103:1851?1862, 2014
20 El-Ridy et al., Liposomal Encapsulation of Amikacin Sulphate for Optimizing Its Effiffifficacy and Safety, BJPR, 5(2): 98-116, 2015
21 Entegris Application Note Size Reduction by a Microflfluidizer,
22 Entegris Application Note USP 729 Testing
23 Entegris Application Note Nanoparticles for Drug Delivery
24 Wong et al., A New Polymer-Lipid Hybrid Nanoparticle System Increases Cytotoxicity of Doxorubicin Against Multidrug-Resistant Human Breast Cancer Cells, Pharmaceutical Research, Vol. 23, No. 7, July 2006
25 Martins et al., Brain delivery of camptothecin by means of solid lipid nanoparticles: Formulation design, in vitro and in vivo studies,International Journal of Pharmaceutics 439 (2012) 49? 62
26 Podaralla et al., Inflfluence of Formulation Factors on the Preparation of Zein Nanoparticles, AAPS PharmSciTech, Vol. 13, No. 3, September 2012
27 Chertok et al., Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors, Biomaterials, Volume 29,
28 Songa et al., Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery, Journal of Controlled Release, Volume 43, Issues 2?3, 18 January 1997
29 Jain et al., Magnetic nanoparticles with dual functional properties: Drug delivery and magnetic resonance imaging, Biomaterials, Volume 29, Issue 29, October 2008
30 Guo et al., Aptamer-functionalized PEG?PLGA na-noparticles for enhanced anti-glioma drug delivery, BiomaterialsVolume 32, Issue 31, November 2011
31 Nguone et al., Accumulating nanoparticles by EPR: A route of no return, Journal of Controlled Release Volume 238, 28 September 2016Menzel et al., In vivo evaluation of an oral self-emulsifying drug deliv-ery system (SEDDS) for exenatide, Journal of Controlled Release, Volume 277, 10 May 2018
32 Dorati et al., Gentamicin Sulfate PEG-PLGA/PLGA-H Nanoparticles: Screening Design and Antimicrobial Effffect Evaluation toward Clinic Bacterial Isolates, Nanomaterials 2018, 8, 37
33 Xu et al., The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma, Biomaterials 30 (2009) 226?232
34 Piao et al., Human serum albumin-coated lipid nano-particles for delivery of siRNA to breast cancer,Na-nomedicine: Nanotechnol ogy, Biology, and Medicine 9 (2013)
35 Andersen et al., Chitosan-Based Nanomedicine to Fight Genital Candida Infections: Chitosomes, Mar. Drugs 2017, 15, 64
36 Kou et al., Preparation and characterization of the Adriamycinloaded amphiphilic chitosan nanoparti-cles and their application in the treatment of liver cancer, Oncology Letters 17: 7833-7841, 2017
37 Kuang et al., Dual Functional Peptide-Driven Nano-particles for Highly Effiffifficient Glioma-Targeting and Drug Codelivery, Molecular Pharmaceutics, April, 2016
38 Cooper et al., Formulation and in vitro evaluation of niacin-loaded nanoparticles to reduce prostaglandin mediated vasodilatory flflushing, European Review for Medical and Pharmacological Sciences, 2015; 19: 3977-3988 39 Martins et al., Physiochemical properties
|